

Interim Project Report

Research on the key technologies for intelligent risk-informed decision support system for nuclear safety and emergency response management

Presenter: Jun Yang

South China University of Technology

CONTENTS CONTENTS

2 Research Objectives

3 Main Contents of Project Cooperation

4

Research Progress

Background Introduction

Project Title: *Research on the key technologies for intelligent risk-informed decision support system for nuclear safety and emergency response management*

Project Duration (2 years): 2022/1/1~2023/12/30

	The Contents of Cooperation
Sub-topic I	Study on a system flow monitoring based Living PSA modeling and assimilation method for predictive risk-oriented intelligence
Sub-topic II	Study on a graph and state space based fast dynamic reliability and risk compute engine
Sub-topic III	Study on task and success path planning under extreme environmental and accident conditions
Sub-topic IV	Development of an integrated decision support system for risk-oriented intelligent applications

Background Introduction

Project Participants and Task Cooperation

Organizations	Representatives	Task Cooperation		
Non-profit Organization Symbio Community Forum (Japan)	Prof. Hidekazu Yoshikawa	1. Risk layering for safety supervisory and management	4. Jointly organize an international workshop on operational safety	
Utsunomiya University (Japan)	Prof. Takeshi Matsuoka	2. An enhanced modeling and analysis platform to be developed for dynamic reliability and risk analysis	and emergency response planning management in	
Shenzhen University (China)	Prof. Ming Yang	3. Success path planning for emergency response management in the early stage of accident mitigation and recovery.	5. Participate in and report the research progress in annal general	
South China University of Technology (China)	Dr. Jun Yang	Overall task implementation and coordination	meeting.	

Research Objectives

Criteria for Project Completion

Type of outputs	Requirements	Completed Inspection
Patent application	1	2
Talents cultivation	6	Undergoing
International PCT (Patent Cooperation Treaty) application	1	2
Software copyright registration	1	1
Papers	8 (SCI: 4; EI: 4)	SCI: 2; EI: 4
Technical report	1	To be completed at the end of the project
International workshop	1	To be held in July
Annual Meeting	≥2	2+1(To be held in November)

□ Intelligent Risk-informed Decision Support System

The intelligent risk-informed decision support system aims to implement, integrate and maintain success paths to hazard mitigation with planning efforts for risk-layering safety supervisory and management. The intelligent risk-informed decision support system consists of three parts: i) <u>critical safety function monitoring</u>; ii) <u>success path planning</u>; iii) <u>operation navigation and supervision</u>.

<u>Critical safety function monitoring</u>: provide an overview of the safety status of the plant.

<u>Success path planning</u>: provide countermeasures to unexpected events under extreme conditions.

<u>Operation navigation and supervision</u>: provide procedural guidance to operators for efficient task execution and in-process human interaction supervisory.

Critical Safety Function Monitoring

The Critical Safety Function (CSF) monitoring subsystem is designed to be consistent with the <u>Safety Parameter Display System (SPDS)</u> and the <u>Intelligent Alarm System</u> design in nuclear power plants.

The CSF monitoring system is developed using a deep knowledge approach, where complex engineering system domain knowledge is represented by <u>the coupled goal-function</u> <u>tree, success tree, and state tree models</u>.

- Goal-function tree: decomposition of Goals-Functions.
- Success tree: means (process and success paths) to realize functions.
- State tree: status of CSF and systems components.

Coupling tree model for knowledge representation

The nuclear safety goal can be achieved and safeguarded by the following 6 critical safety functions:

- 1. Reactivity control
- 2. Reactor core cooling
- 3. Heat removal from the primary system
- 4. Reactor coolant inventory control
- 5. Primary pressure boundary integrity
- 6. Containment integrity

Critical Safety Function Monitoring

How to evaluate the overall plant safety status especially from a risk perspective?

Possible solutions:

Solution #1 (State Combination Method)	Solution #2 (Conservative Method)	Solution #3 (Risk Priority Number)		
The evaluation of the overall plant safety status is regarded as a multi-valued function that all possible combinations of the states of six critical safety functions should be considered.	The state of nuclear safety goal is simply determined based on the most damaged state of critical safety functions.	The overall plant safety status is evaluated from a risk perspective by using the Risk Priority Number (RPN) methodology.		
 ✓ State of being self-evident ≉ State space is huge. ≉ Lack of guiding principles of risk management 	 Simple to implement. The state definition is not refined enough. 	 ✓ Has a solid theoretical foundation and widely used. ≱ May not reflect the actual risk. 		

Critical Safety Function Monitoring

Solution Set to the CSF monitoring with multi-valued state definition into Defense-in-Depth (DiD) risk monitor.

Risk level	Stop	Cool	Contain	Possibility of severe accident		
0	1	1	No risk Safely shutdown, cooled and no release			
1	1	1	0 No severe accident phenomena but some problem in containment			
2	1	0	1	Loss of not so serious cooling function Safely shutdown, but cooling failed but no release		
3	1	0	0	Serious severe accident possible Safely shutdown, but both cooling and contain function failed		
3	0	1	1	Severe accident may be suppressed by ESF function Shutdown failed but cooling and no release		
3	0	1	0	Some contain function failed Shutdown failed , cooled but released		
4	0	0	1	Serious though severe accident phenomena occurr because containment function succeeded Shutdown failed , cooling failed but no release		
5	0	0	0	Worst severe accident because all safety functions failed		

How should we configure the risk level ranking when the risk level is related to the state combinations of 6 safety critical functions with multi-valued state definition?

Retrofitting of GO-FLOW Method

✓ An automated GO-FLOW modeling tool: to be developed in support of <u>reliability-based system engineering design</u> and <u>reliability/risk monitor</u> <u>applications.</u>

☑ An enhanced GO-FLOW analysis algorithm: to be developed to expand the capabilities of <u>exact calculation</u> and the <u>minimum path sets interpretation</u>.

Expansion and Optimization of GO-FLOW platform: <u>reliability analysis of</u> <u>repairable PMS system</u>, <u>integration of common cause failure/importance</u> <u>analysis/sensitivity analysis</u>, <u>Visual presentation of results</u>.

☑ II-1: An automated GO-FLOW modeling tool (talked by Mr. He Zhanyu)

The procedure implemented for automated GO-FLOW modeling can be divided into three main steps: i) system P&ID design information extraction and analysis; ii) connection relationship identification; iii) GO-FLOW model generation.

System reliability

analysis

☑ II-2: An enhanced GO-FLOW analysis algorithm

The algorithm is implemented by the following steps:

Step-1: GO-FLOW modeling.

Step-2: Final signal marking.

Step-3: Shared signal identification.

Step-4: Shared signal marking.

Step-5: Ideal signal renaming.

Step-6: Graph-based traversal search analysis.

Step-7: Generation of the minimal path sets.

Step-8: Quantification of system failure/success probability.

II-3: Expansion and Optimization of GO-FLOW Platform

(1) *Reliability analysis of repairable PMS system*

Essential problems to be solved:

- ① Exact solution of availability of repairable PMS system (Continuous-Time Markov Chain, CTMC)
- ② Balance efficiency, accuracy, and flexibility in system reliability/availability calculation. (GO-FLOW/Markov chain with flexible time point interpolation)
- ③ Obtain margin of error, confidence interval, confidence level.

☑ III-1: Success Path Planning based on Minimum Path Sets (MPSs)

The success path tracing and planning algorithm is implemented based on the inputs of complete set of *minimal path sets* that are obtained using graph traversal analysis on the GO-FLOW chart.

It should be noted that the success paths converted from minimal path sets can only provide **procedural guidance from the perspective of function realization and goal achievement in a high level of abstraction**. The needs of step-by-step guide in temporal sequence are also considered with the sequential flow of signals, process simulation as well as practical engineering experiences in our ongoing studies.

- ☑ III-2: Success Path Planning based on Knowledge Representation and Reasoning
- A Flow-based Success Path Planning Method

☑ III-2: Success Path Planning based on Knowledge Representation and Reasoning

Μ

Α

A Flow-based Success Path Planning Method

The flow-based success path planning is implemented with goaland function-oriented task & action planning. The mission goal is determined based on system functional objectives and online monitoring of key process parameters. The emergency action planning is carried out by deductive reasoning with anti-degradation goals and objectives in a reversed logical value setting.

Knowledge Representation

Physical state of component	Trend of parameter	State of process parameter		
O: Turn on/Turn up	↑ : Uptrend	H: High-value alarm		
—: Maintain current state/position	\leftrightarrow : No change	OK: Within normal range		
X: Turn off/Turn down	\downarrow : Downtrend	L: Low-value alarm		

Backward causation

☑ III-2: Success Path Planning based on Knowledge Representation and Reasoning

A Flow-based Success Path Planning Method

Case Study: Manual Makeup in slight boron dilution accident

Example REA system

Success Path Sets

Part IV: Operation Navigation and Supervision

Operational Mission Reliability Analysis and Monitoring

- The operational mission reliability analysis and monitoring involves <u>system</u> <u>GO-FLOW modeling</u>, <u>tread</u> <u>impact analysis</u> based on synchronous prediction and supervision and <u>reliability</u> <u>profiler for goal monitoring</u>.
- The monitoring of operational mission goals using measures of *instantaneous reliability* pays more attention to the continuous real-time sensing

with system configuration changes involved with inprocess human interactions during the execution of a task.

GO-FLOW modeling and analysis process for operational mission reliability analysis

Part IV: Operation Navigation and Supervision

Intelligent Operational Supervision System

An intelligent operational supervision system is about to be powered with the integration of following capabilities.

- Unsafe Action Identification (Patternbased Recognition)
- Procedure-based Navigation and Supervision
- Non-procedural Path Guiding
- Operational Mission Reliability Monitoring
- Trend Impact Prediction
- Operational Hazard Analysis

Operation	Navigation					Operatio	on Supervision			
. 01	perating Mode:	Normal Operatio	r ~			Relo	ad Refresh	ı		
perational	I Mission Goal:	Manual Makeup	~			SN	Actual Play	ed Action Sequer	ice	Human Action Mod
System Functional Goal: Volume Control		Free Action	Free Action Planning:			Switch to Manual Control Mode@REA002PC			Early Operation	
Task Sequence			■ □ REA001PO			witch to Manual Control Mode@REA004PO			Early Operation	
🗵 Op	en Valve REA	001PIV	■ 🗆 Swite	Switchover between A/M Mode Open Action Close Action			Open Pu	Open Pump@REA002PO		
Switc	h to Manual Co	ontrol Mode					Open Pu	Imp@REA004PO	Early Operation	
× RE	EA002PO to Ma EA004PO to Ma	anual Control Mod	e REA00	2PO		5	Open Va	Open Valve@REA001PCV		
⊜ Start	Manual Makeu	p		chover between A/M Moo ben Action	le	6	Open Va	Open Valve@REA002PCV		
X Op	en REA002PC)		ose Action		7	Open Val	Open Valve@REA002MOV		
X Op	oen REA001PC	ev.	REA00	REA003PO Switchover between A/M Mode Open Action Close Action REA004PO			Open Va	alve@REA001PIV	Late Operation	
	en REA002PC	SV SV					Close Pu	ump@REA002PO	Correct Operation	
Stop I	Manual Makeu	р	REA00				Close Pu	ump@REA004PO	Correct Operation	
Close REA002PO		■ □ Swite	Switchover between A/M Mode		11	Close Va	Close Valve@REA001PCV			
	ose REA001PC	SV SV		Close Action REA001PCV		12	Close Va	Close Valve@REA002PCV		Correct Operation
	ose REA002PC	2V	■ □ REA00			13	Close Va	Close Valve@REA002MOV		
✓ Close Valve REA001PIV			Close Action		14	Close Valve@REA001PIV			Correct Operation	
perationa	al Hazard Analy	sis				Operatio	onal Mission Relia	ability Analysis		
ction Pla	nning: Open	Valve @ REA0	01PIV @ REA S	System		Operatio	onal Mission Goa	I: Manual Makeu	p 🗸	
Goal Con	nector Monit	oring Input of Goa	I Indicator			Syster	m Functional Goa	I: Volume Control		
Execution	Analysis	esults Display				Synch	ronous Prediction	and Supervision	Export In	nage
Goals	Current	Predictive	he Change of	Safety Alerts	-	Trend Ir	mpact Precursor	Reliability Profiler]	
C1	Status	Normal	Trend	No Effort for Now		Action Step	Synchronous Prediction	Synchronous Supervision	Trend Difference	Safety Alerts
GI	Normai	Normai		NO Effect for Now	-	S1	0	0	0	No Effect for No
G2	Low	High	1	Positive Effects		S2	0	0	0	No Effect for No
G3	Normal	Normal	-	No Effect for Now		S3	0	0	0	No Effect for No
G4	Low	High	t	Positive Effects		S4	0.99752948	0.99999900	+	Positive Effects
						S5	0.99879972	0.99879972	0	No Effect for No
				•••		S6	1-1.11022E-16	1	+	Positive Effects
					PROF LINE	S7	1	1	0	No Effect for No

Thank you for your attention.